🚀 Advanced Backtesting Framework

Master VectorBT for Indian Stock Markets

Learn high-performance backtesting with VectorBT. Build, test, and optimize trading strategies for NSE stocks, NIFTY indices, and F&O segments with blazing-fast vectorized computations.

NSE & BSE Stocks
F&O Strategies
Real Indian Examples
# Quick VectorBT Example - RELIANCE
import vectorbt as vbt
import yfinance as yf

# Download Indian stock data
data = vbt.YFData.download(
    "RELIANCE.NS",
    start="2023-01-01",
    end="2024-01-01"
)

# Create RSI strategy
rsi = vbt.RSI.run(data.get('Close'))
entries = rsi.rsi_crossed_below(30)
exits = rsi.rsi_crossed_above(70)

# Backtest with Indian market parameters
portfolio = vbt.Portfolio.from_signals(
    data.get('Close'),
    entries, exits,
    init_cash=1_00_000,  # ₹1 Lakh
    fees=0.0003,  # NSE charges
    slippage=0.0005
)

# Display results
print(f"Total Return: {portfolio.total_return():.2%}")
print(f"Sharpe Ratio: {portfolio.sharpe_ratio():.2f}")
Live Example

Why VectorBT for Indian Markets?

Powerful features tailored for NSE, BSE, and MCX trading

Lightning Fast

Test thousands of strategies on NIFTY 50 stocks in seconds using NumPy vectorization and Numba JIT compilation.

100x faster than loop-based backtesting

Indian Market Ready

Built-in support for NSE holidays, market hours, STT, brokerage, and other Indian market-specific parameters.

Accurate cost modeling

Advanced Analytics

Comprehensive metrics including Sharpe ratio, maximum drawdown, and custom Indian market indicators.

50+ performance metrics

Complete Learning Path

From basics to advanced strategies for Indian markets

Module 1 2 hours

Getting Started

Installation, setup, and your first backtest with NIFTY 50 stocks

  • Environment setup
  • NSE data download
  • First RELIANCE strategy
Start Module
Module 2 3 hours

Indian Indicators

Technical indicators popular in Indian markets

  • SuperTrend strategy
  • VWAP & Pivot Points
  • Custom indicators
Start Module
Module 3 4 hours

Portfolio Strategies

Multi-asset strategies with NIFTY 50 stocks

  • Sector rotation
  • Pair trading
  • Risk management
Start Module
Module 4 3 hours

Options Strategies

F&O strategies for NIFTY and BANK NIFTY

  • Option chain analysis
  • Straddle & Strangle
  • Iron Condor
Start Module
Module 5 5 hours

Optimization

Parameter optimization and walk-forward analysis

  • Grid search
  • Genetic algorithms
  • Overfitting prevention
Start Module
Module 6 4 hours

Live Trading

Deploy strategies with Indian brokers

  • Zerodha integration
  • Paper trading
  • Risk controls
Start Module

Quick Start Guide

Step 1 Installation

# Install VectorBT with all dependencies
pip install vectorbt[full]

# Install Indian market data libraries
pip install yfinance nsepy

Step 2 Import Libraries

import vectorbt as vbt
import pandas as pd
import numpy as np
from datetime import datetime, timedelta

Step 3 Your First Backtest

# Download HDFC Bank data
data = vbt.YFData.download(
    "HDFCBANK.NS",
    start="2023-01-01",
    end="2024-01-01"
)

# Simple Moving Average Strategy
fast_ma = vbt.MA.run(data.get('Close'), 10)
slow_ma = vbt.MA.run(data.get('Close'), 50)

# Generate signals
entries = fast_ma.ma_crossed_above(slow_ma)
exits = fast_ma.ma_crossed_below(slow_ma)

# Run backtest
portfolio = vbt.Portfolio.from_signals(
    data.get('Close'),
    entries, exits,
    init_cash=5_00_000,  # ₹5 Lakhs
    fees=0.0003  # NSE charges
)

# View results
print(portfolio.stats())

Popular Indian Market Strategies

📈

NIFTY Momentum

Top performing stocks rotation

🎯

SuperTrend

Popular trend following system

⚖️

Pair Trading

HDFC Bank vs ICICI Bank

🔄

Mean Reversion

Bank NIFTY options selling

Resources & Tools

Key Performance Metrics

50+

Built-in Indicators

100x

Faster than Loops

1000+

NSE Stocks Supported

24/7

Community Support

Sample Backtest Results

Total Return

+127.45%

Sharpe Ratio

2.34

Max Drawdown

-18.76%

Win Rate

68.2%

Profit Factor

2.89

Total Trades

147